Използвана литература

  1. Amirova, K., et al., 2019. Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils, Food and Chemical Toxicology 124, pp. 1–9
  2. Amirova, K., et al., 2019. Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils, Food and Chemical Toxicology 124, pp. 1–9
  3. Ananda da Silva Antonio, Larissa Silveira Moreira Wiedemann and Valdir Florencio Veiga-Junior. Natural products' role against COVID-19, RSC Adv., 2020, 10,23379
  4. Anjum S, Abbasi BH. Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L. Int J Nanomedicine. 2016;11:715-728. Published 2016 Feb 22. doi:10.2147/IJN.S102359
  5. Anjum S, Abbasi BH. Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L. Int J Nanomedicine. 2016;11:715-728
  6. Antiviral activity of metal chelates of caffeic acid and similar compounds towards herpes simplex, VSV-Ebola pseudotyped and vaccinia viruses, Antiviral Research, Volume 160, 2018, pp. 143-150
  7. Baker, M., J. Rogge, 2020. Early detection of COVID-19 using characteristic leucocyte differential count (CLDC), Life  Research, 3 (3), pp. 101–107
  8. Bardarov, K., et al. 2016. Preliminary screening for study of the chemical composition of clinopodium
  9. Bhatia, А., H. Kaur Sekhon, and G. Kaur, Sex Hormones and Immune Dimorphism, The Scientific World Journal, Volume 2014, Article ID 159150, 8 pages
  10. Bravo A, Anacona JR. Metal complexes of the flavonoid quercetin: antibacterial properties. Transit Metal Chem 2001; 26: 20–23
  11. Cherrak, S., et al., 2020. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies
  12. Dagnon S, Bojilov D, Docheva M, Edreva A. The Relationship between Main 
  13. Dai W., et a., Structure-based design of antiviral drug  candidates targeting the SARS-CoV-2 main protease, Science 368 (2020)  1331–1335
  14. Day AJ, DuPont MS, Ridley S, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998;436(1):71–75
  15. de Boer VC, Dihal AA, van der Woude H, et al. Tissue distribution of quercetin in rats and pigs. J Nutr. 2005;135(7):1718–1725
  16. Dolatabadi JE. Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int J Biol Macromol 2011; 48: 227–233. doi: 10.1016/j.ijbiomac.2010.11.012.
  17. Drug Res. 2018; 10(3): 131-138
  18. Galdiero S., A. Falanga, M. Vitiello, M. Cantisani, V. Marra, M. Galdiero, Silvernanoparticles as potential antiviral agents, Mol. Basel Switz. 16 (2011), 8894e8918
  19. Gómez-Rial, Jose, I. Rivero-Calle, A. Salas, F. Martinón-Torres, 2020. Role of Monocytes/Macrophages in Covid-19 Pathogenesis: Implications for Therapy, Infection and Drug Resistance 2020:13, pp. 2485–2493
  20. Gómez-Rial, Jose, I. Rivero-Calle, A. Salas, F. Martinón-Torres, 2020. Role of Monocytes/Macrophages in Covid-19 Pathogenesis: Implications for Therapy, Infection and Drug Resistance, 13, pp. 2485–2493
  21. Hussain, M, et al., 2017. Applications of Plant Flavonoids in the Green Synthesis of Colloidal Silver Nanoparticles and Impacts on Human Health, Iran J Sci Technol Trans Sci, 43, pp. 1381-1392
  22. J.K. Cho, M.J. Curtis-Long, K.H. Lee, D.W. Kim, H.W. Ryu, H.J. Yuk, K.H. Park, Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from  the fruits of Paulownia tomentosa, Bioorg. Med. Chem. 21 (2013) 3051–3057
  23. J.Y. Park, J.A. Ko, D.W. Kim, Y.M. Kim, H.J. Kwon, H.J. Jeong, C.Y. Kim, K.H. Park, W.S. Lee, Y.B. Ryu, Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV, J. Enzyme Inhib. Med. Chem. 31 (2016) 23–30
  24. Jagaran K., M. Singh. Nanomedicine for COVID-19: Potential of Copper Nanoparticles, Biointerface Research in Applied Chemistry Volume 11, Issue 3, 2021, 10716 - 10728
  25. Jeffrey Langland, Bertram Jacobs, Carl E. Wagner, Guillermo Ruiz, Thomas M. Cahill,
  26. Jeremiah S., K. Miyakawa, T. Morita,Y. Yamaoka, A. Ryo. Potent antiviral effect of silver nanoparticles on SARS-CoV-2, Biochemical and Biophysical Research Communications, 533 (2020), pp. 195-200
  27. Jo S, Kim S, Shin DH, Kim MS, 2020. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem.;35(1), pp. 145-151
  28. Jo S., S. Kim S, D. Shin, М. Kim, 2020. Inhibition of SARS-CoV 3CL protease by flavonoids, J Enzyme Inhib Med Chem, 35, pp. 145 – 151
  29. Joshi Т., P. Sharma, S. Mathpal, H. Pundir, V. Bhatt and S. Chandra, Eur. Rev. Med. Pharmacol. Sci., 2020, 24, 4529
  30. Kaneko, A., at al., 2017. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by b-glucuronidase in macrophages, Immunity, Inflammation and Disease, 5(3), pp. 265–279
  31. Kaneko, A., at al., 2017. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by b-glucuronidase in macrophages, Immunity, Inflammation and Disease, 5(3), pp. 265–279
  32. Khaerunnisa S., H. Kurniawan, R. Awaluddin and S. Suhartati, Prepr, 2020, DOI: 10.20944/ Preprints 202003.0226. V1
  33. 33.Kim D., et al., Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia, J. Enzyme Inhib. Med. Chem. 29 (2014) 59–63
  34. Kovats, S., 2015. Cell Immunol., 294(2): 63–69
  35. Kumar V., Y. Jung and P. Liang, Expert Opin. Ther. Pat., 2013, 23, 1337–1348
  36. Kumar, S. and Ab. Pandey, 2013. Chemistry and Biological Activities of Flavonoids: An Overview, Тhe ScientiicWorld Journal, http://dx.doi.org/10.1155/2013/162750
  37. Lee C., J. Lee, N. Lee, D. Kim, Y. Jeong, Y. Chong, Investigation of the pharmacophore space of Severe Acute Respiratory Syndrome coronavirus (SARS- CoV) NTPase/helicase by dihydroxychromone derivatives, Bioorg. Med. Chem. Lett. 19 (2009) 4538–4541
  38. Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov.
  39. M.S. Yu, J. Lee, J.M. Lee, Y. Kim, Y.W. Chin, J.G. Jee, Y.S. Keum, Y.J. Jeong, Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13, Bioorg. Med. Chem. Lett. 22 (2012) 4049–4054
  40. Malešev, D. and V. Kuntic, 2007. J. Serb. Chem. Soc. 72 (10), pp. 921–939 
  41. Marí a Tordera, Marí a Luisa Ferrándiz and María José Alcaraz, 1994.  Influence of Anti-Inflammatory Flavonoids on Degranulation and Arachidonic Acid Release in Rat Neutrophils, Z. Naturforsch. 49, pp. 235-240
  42. Mendes, L., et al., 2019.  Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Sci Rep 914906 
  43. Mendes, L., et al., 2019.  Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Sci Rep 914906 
  44. MI Din, F Arshad, Z Hussain, M Mukhtar, 2017.  Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities, Nanoscale research letters, 12:638
  45. Middleton E., 1998. Effect of Plant Flavonoids on Immune and Inflammatory Cell Function. In: Manthey J.A., Buslig B.S. (eds) Flavonoids in the Living System. Advances in Experimental Medicine and Biology, Vol 439, pp. 175-182
  46. Mishra B, Barik A, Priyadarsini KI, Mohan H. Fluorescence spectroscopic studies on the binding of a flavonoid antioxidant Qu to serum albumins. J Chem Sci 2005; 117: 641–647
  47. Murota K, Terao J. Antioxidative flavonoid quercetin: implication of its
    intestinal absorption and metabolism. Arch Biochem Biophys. (2003) 417:12–
    7. doi: 10.1016/S0003-9861(03)00284-4
  48. Murota К., Y. Nakamura & M. Uehara, 2018. Flavonoid metabolism: the interaction of metabolites and gut microbiota, Bioscience, Biotechnology, and Biochemistry, 82:4, 600-610
  49. Murota K, Cermak R, Terao J, et al. Influence of fatty acid patterns on the intestinal absorption pathway of quercetin in thoracic lymph duct-cannulated rats. Br J Nutr. 2013;109(12):2147–2153
  50. Nguyen Т., H.J. Woo, H.K. Kang, V.D. Nguyen, Y.M. Kim, D.W. Kim, S.A. Ahn, Y. Xia, D. Kim, Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnol. Lett. 34 (2012) 831–838
  51. Nikolova, M., 2011. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species. Pharmacognosy Res. 3(4), pp. 256–259.
  52. Pandit M. and N. Latha, Preprints, 2020, DOI: 10.21203/rs.3.rs-22687/v1
  53. Pantev, A., at al., 2006. Biologically Active Constituents of a Polyphenol Extract from Geranium sanguineum L. with Anti-Influenza Activity, Verlag der Zeitschrift für Naturforschung, pp. 508-516
  54. Park J., et al., Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors, J. Enzym. Inhib. Med. Chem. 32 (2017) 504–515
  55. Patten G., M. Abeywardena and L. Bennett, Crit. Rev. Food Sci. Nutr., 2016, 56, 181–214
  56. Polyphenol Components and Free Radical Scavenging Activity of Selected Medicinal Plants.  Int. J. Pharm. Sci. 
  57. Publicity Department of the People’s Republic of China. Press conference of the joint prevention and control mechanism of state council on Feb 17, 2020. http://www.nhc.gov.cn/xcs/fkdt/202002/f12a62d10c2a48c6895cedf2faea6e1f.shtml (accessed Feb 23, 2020; in Chinese).
  58. Qin C, Zhou L, Hu Z, et al., 2020. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis
  59. Qin C, Zhou L, Hu Z, et al., 2020. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis
  60. Rahman N., Z. Basharat, M. Yousuf, G. Castaldo, L. Rastrelli and H. Khan, Molecules, 2020, 25, 2271
  61. Ren J.L., Zhang A.H., Wang X.J., 2020. Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res., pp. 155
  62. Russo, Maria et al. Roles of flavonoids against coronavirus infection, Chemico-biological interactions vol. 328: 109211, 2020, 19, 149–150
  63. Sambataro, et al., 2020. The Model for Early Covid-19 Recognition (MECOR) Score: A Proof-of-Concept for a Simple and Low-Cost Tool to Recognize a Possible Viral Etiology in Community-Acquired Pneumonia Patients during COVID-19 Outbreak, Diagnostics, 10, 619
  64. Shujahadeen, B., et al. Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution. Nanomaterials, 2019, 9, 1557;
  65. Utsunomiya H, et al. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int J Mol Med. 2014 Oct;34(4):1020-4
  66. vulgare L. Water extract, Compt. rend. Acad. bulg. Sci., 69, No 6, pp. 717-724
  67. Weng XJ, Chen LL, Zhang HQ, 2008. Effect of total flavonoid in leaves of Ginkgo biloba on the apoptosis of eosinophil in broncho alveloar lavage fluid, Yao Xue Xue Bao, 43(5), pp. 480-483
  68. Yang R., Liu H., Bai C., Wang Y., Zhang X., Guo R., Wu S., Wang J., Leung E., Chang H., Li P., Liu T., Wang Y. Chemical composition and pharmacological mechanism of Qingfei Paidu decoction and Ma xing Shi Gan decoction against coronavirus Disease 2019 (COVID-19): in silico and experimental study. Pharmacol. Res. 2020;157:104820
  69. Yang R., Liu H., Bai C., Wang Y., Zhang X., Guo R., Wu S., Wang J., Leung E., Chang H., Li P., Liu T., Wang Y. Chemical composition and pharmacological mechanism of Qingfei Paidu decoction and Ma xing Shi Gan decoction against coronavirus Disease 2019 (COVID-19): in silico and experimental study. Pharmacol. Res. 2020;157:104820
  70. Zakaryan, H., et al., 2017. Flavonoids: promising natural compounds against viral infections, Arch Virol,  162. pp. 2539–2551
  71. Zandi, K., at al., 2011. Antiviral activity of four types of bioflavonoid against dengue virus type-2 Virology Journal 2011, 8, 560

Към Нов интегративен метод за терапия при SARS-CОV-2, съчетаващ флавоноидно базирана традиционна медицина и наномедицина